Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer.
نویسندگان
چکیده
The homeobox gene Nkx2-5 is the earliest known marker of the cardiac lineage in vertebrate embryos. Nkx2-5 expression is first detected in mesodermal cells specified to form heart at embryonic day 7.5 in the mouse and expression is maintained throughout the developing and adult heart. In addition to the heart, Nkx2-5 is transiently expressed in the developing pharynx, thyroid and stomach. To investigate the mechanisms that initiate cardiac transcription during embryogenesis, we analyzed the Nkx2-5 upstream region for regulatory elements sufficient to direct expression of a lacZ transgene in the developing heart of transgenic mice. We describe a cardiac enhancer, located about 9 kilobases upstream of the Nkx2-5 gene, that fully recapitulates the expression pattern of the endogenous gene in cardiogenic precursor cells from the onset of cardiac lineage specification and throughout the linear and looping heart tube. Thereafter, as the atrial and ventricular chambers become demarcated, enhancer activity becomes restricted to the developing right ventricle. Transcription of Nkx2-5 in pharynx, thyroid and stomach is controlled by regulatory elements separable from the cardiac enhancer. This distal cardiac enhancer contains a high-affinity binding site for the cardiac-restricted zinc finger transcription factor GATA4 that is essential for transcriptional activity. These results reveal a novel GATA-dependent mechanism for activation of Nkx2-5 transcription in the developing heart and indicate that regulation of Nkx2-5 is controlled in a modular manner, with multiple regulatory regions responding to distinct transcriptional networks in different compartments of the developing heart.
منابع مشابه
The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors.
The tissue-restricted GATA-4 transcription factor and Nkx2-5 homeodomain protein are two early markers of precardiac cells. Both are essential for heart formation, but neither can initiate cardiogenesis. Overexpression of GATA-4 or Nkx2-5 enhances cardiac development in committed precursors, suggesting each interacts with a cardiac cofactor. We tested whether GATA-4 and Nkx2-5 are cofactors for...
متن کاملIdentification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5.
Nkx2-5 marks the earliest recognizable cardiac progenitor cells, and is activated in response to inductive signals involved in lineage specification. Nkx2-5 is also expressed in the developing foregut, thyroid, spleen, stomach and tongue. One approach to elucidate the signals involved in cardiogenesis was to examine the transcriptional regulation of early lineage markers such as Nkx2-5. We gene...
متن کاملComplex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules.
We previously reported that an Nkx2-5-GFP bacterial artificial chromosome in transgenic mice recapitulated the endogenous gene activity in the heart. Here, we identified three additional previously uncharacterized distal enhancer modules of Nkx2-5: UH6, which directed transgene expression in the right ventricle, interventricular septum, and atrial ventricular canal; UH5, which directed expressi...
متن کاملA positive GATA element and a negative vitamin D receptor-like element control atrial chamber-specific expression of a slow myosin heavy-chain gene during cardiac morphogenesis.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of thi...
متن کاملCo-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart.
Identification of genomic regions that control tissue-specific gene expression is currently problematic. ChIP and high-throughput sequencing (ChIP-seq) of enhancer-associated proteins such as p300 identifies some but not all enhancers active in a tissue. Here we show that co-occupancy of a chromatin region by multiple transcription factors (TFs) identifies a distinct set of enhancers. GATA-bind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 126 1 شماره
صفحات -
تاریخ انتشار 1999